A Density Functional Theory Study of CO2 Interaction with Brookite TiO2 by
نویسندگان
چکیده
i ABSTRACT Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO 2) emissions and depleting energy resources. A convenient solution would be a process that could simultaneously use CO 2 while producing energy. The photocatalytic reduction of CO 2 to fuels over the photocatalyst titanium dioxide (TiO 2) is such a process. However, this process is presently inefficient and unsuitable for industrial applications. A step toward making this process more effective is to alter TiO 2 based photocatalysts to improve their activity. The interactions of CO 2 with oxygen-deficient and unmodified (210) surfaces of brookite TiO 2 were studied using first-principle calculations on cluster systems. Charge and spin density analyses were implemented to determine if charge transfer to the CO 2 molecule occurred and whether this charge transfer was comparable to that seen with the oxygen-deficient and unmodified anatase TiO 2 (101) surfaces. Although the unmodified brookite (210) surface provided energetically similar CO 2 interactions as compared to the unmodified anatase (101) surface, the unmodified brookite surface had negligible charge transfer to the CO 2 molecule. This result suggests that unmodified brookite is not a suitable catalyst for the reduction of CO 2. However, the results also suggest that modification of the brookite surface through the creation of oxygen vacancies may lead to enhancements in CO 2 reduction. The computational results were supported with laboratory data for CO 2 interaction with perfect brookite and oxygen-deficient brookite. The laboratory data, generated using diffuse ii reflectance Fourier transform infrared spectroscopy, confirms the presence of CO 2-on only the oxygen-deficient brookite. Additional computational work was performed on I-doped anatase (101) and I-doped brookite (210) surface clusters. Adsorption energies and charge and spin density analyses were performed and the results compared. While charge and spin density analyses showed minute charge transfer to CO 2 , the calculated adsorption energies demonstrated an increased affinity for CO 2 adsorption onto the I-doped brookite surface. Gathering the results from all calculations, the computational work on oxygen-deficient, I-doped, and unmodified anatase and brookite surface structures suggest that brookite TiO 2 is a potential photocatalysts for CO 2 photoreduction.
منابع مشابه
Adsorption Behaviors of Curcumin on N-doped TiO2 Anatase Nanoparticles: Density Functional Theory Calculations
The density functional theory (DFT) calculations were used to get information concerning the interaction of curcumin with pristine and N-doped TiO2 anatase nanoparticles. Three adsorption geometries of curcumin over the TiO2 anatase nanoparticles were studied in order to fully exploit the sensing properties of TiO2 nanoparticles. Curcumin molecule adsorbs on the fivefold coordinated titanium si...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملTheoretical study of the interaction of harmful heroin molecule with N-doped TiO2 anatase nanoparticles
Density functional theory calculations were carried out to study the interaction of heroin molecule with pristine and N-dopedTiO2 anatase nanoparticles. The oxygen atom of heroin molecule was found to be the binding site on the heroin molecule. In contrast, the binding site of TiO2 nanoparticle was positioned over the fivefold coordinated titanium atoms. The results showed that the adsorption e...
متن کاملTiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study
We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012